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Continuum limit of two-dimensional spin models with continuous symmetry
and conformal quantum field theory
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~Received 24 March 1997!

According to the standard classification of conformal quantum field theory~CQFT! in two dimensions, the
massless continuum limit of the O~2! model at the Kosterlitz-Thouless transition point should be given by the
massless free scalar field; in particular the Noether current of the model should be proportional to~the dual of!
the gradient of the massless free scalar field, reflecting a symmetry enhanced from O~2! to O(2)3 O(2). More
generally, the massless continuum limit of a spin model with a symmetry given by a Lie groupG should have
an enhanced symmetryG3G. We point out that the arguments leading to this conclusion contain two serious
gaps:~i! the possibility of ‘‘nontrivial local cohomology’’ and~ii ! the possibility that the current is an ultralocal
field. For the two-dimensional O~2! model we give analytic arguments that rule out the first possibility and use
numerical methods to dispose of the second one. We conclude that the standard CQFT predictions appear to be
borne out in the O~2! model, but give an example where they would fail. We also point out that all our
arguments apply equally well to anyG symmetric spin model, provided it has a critical point at a finite
temperature.@S1063-651X~98!00601-1#

PACS number~s!: 05.70.Jk
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I. INTRODUCTION

Ever since the ground-breaking works of Belavin, Poly
kov, and Zamolodchikov@1# as well as Friedan, Qiu, an
Shenker @2#, it has been taken for granted that tw
dimensional critical phenomena can be fully classified by
well-known two-dimensional~rational! conformal quantum
field theories. In theories with a continuous symmetry gro
G it is believed that the symmetry is ‘‘doubled’’ toG3G @3#
with left and right chiral theories both separately invaria
under G. It is believed that essentially one only needs
construct the appropriate representation of the correspon
Kac-Moody~current! algebra and out of it a representation
the Virasoro algebra by the so-called Sugawara construc
to be able to read off the properties of the critical theory

Applying this philosophy to the model with the simple
continuous symmetry, namely, the critical O~2! model, Af-
fleck concluded that the corresponding Kac-Moody and
rasoro algebras are those of the massless free field@3#. This
means in particular that the Noether current is a gradient
hence its curl vanishes. However, in Sec. II we point ou
gap in these conventional arguments that is related to
so-called problem of local cohomology and we also prov
a counterexample. In Appendix A we discuss the local co
mology problem in a little more detail. Our counterexamp
also shows the existence of critical theories that do no
into the conformal classification. It is discussed in detail
Appendix B.

In Sec. III we give analytic arguments that show that
the case of the O~2! model the situation is different from tha
in the counterexample and the curl of the current inde
vanishes in the continuum limit. These arguments make
cial use of the property of reflection positivity~RP!. We
concentrate on the O~2! model as a typical example, but
571063-651X/98/57~1!/111~9!/$15.00
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should not be overlooked that our general arguments ap
equally well to any two-dimensional~2D! spin model with a
continuous symmetry described by a Lie groupG, provided
it has a critical point at a finite value of the inverse tempe
ture b.

In Sec. IV we turn to another possible failure of the co
formal classification: It could happen that in the continuu
limit the current becomes ‘‘ultralocal,’’ i.e., its Euclidea
correlation functions are pure contact terms and
Minkowski space correlations vanish. To exclude this pos
bility we use numerical simulations as well as heuristic
guments. These Monte Carlo simulations of the O~2! model
at its Kosterlitz-Thouless~KT! transition point also illustrate
the features derived analytically in Sec. III. While thus,
the end, we confirm the conventional picture, we think it
important to realize that without the additional informatio
provided here, there was no justification for accepting it.

II. GAPS IN THE STANDARD ARGUMENTS
AND A COUNTEREXAMPLE

Conventionally, the arguments leading to the ‘‘doubling
of the symmetry in the continuum limit of a critical theor
and the splitting of the theory into two independent ‘‘chira
theories are given in the framework of quantum field theo
in Minkowski space@3#. Here we want to rephrase thes
arguments in the Euclidean setting, point out that one of
assumptions needed is not necessarily true, and give an
ample violating that assumption.

Assume that we have a scale-invariant continuum the
with a conserved currentj m(x). Euclidean covariance re
quires that the two-point functionGmn of j m is of the form
111 © 1998 The American Physical Society
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112 57ADRIAN PATRASCIOIU AND ERHARD SEILER
Gmn[^ j m~0! j n~x!&5dmn

b

x2 1
axmxn

~x2!2 ~xÞ0!. ~1!

Imposing current conservation means

]mGmn50 ~2!

for xÞ0, which implies

a522b, ~3!

Gmn~x!5bS dmn

x2 2
2xmxn

~x2!2 D . ~4!

This is, up to the factorb, equal to the two-point function o
]mf, wheref is the massless free scalar field~it is irrelevant
here that the massless scalar field does not exist as a W
man field!. If we look at the two-point function of the dua
currentemn j n , it turns out to be

G̃mn[emlernGlr5Gmn , ~5!

so the dual-current two-point function satisfies automatica
the conservation law. Conservation of the two currentsj and
j̃ is equivalent to conservation of the two chiral curren
j 65 j 06 j 1 in Minkowski space.

By general properties of local quantum field theo
~Reeh-Schlieder theorem; see@4#! it follows that the dual
current is conserved as a quantum field. So the two con
vation laws together imply that

j m5Ab]mf, ~6!

wheref is the massless scalar free field, and also that

j m5Abemn]nc, ~7!

wherec is another copy of the massless scalar free field
As presented, this argument is certainly correct. Howe

it depends on the assumption that the Noether currentsexist
as Wightman fields and this assumption is in fact nontriv
and coulda priori fail in the critical O~2! model. A simple
example of a quantum field theory with O~2! symmetry in
which the Noether current does not exist as a Wightman fi
is given by the two-component free field in two dimensio
in the massless limit. It is simply given by a pair of indepe
dent Gaussian fieldsF (1),F (2), both with covariance

C~x!5
1

~2p!2E d2p
eipx

p21m2
, ~8!

where we are interested in the limitm→0. This system has a
global O~2! invariance rotating the two fields into each othe
It is well known that the massless limit only makes sense
functions of the gradients of the fields. But the Noether c
rent of the O~2! symmetry is given by

j m~x!5F~1!~x!]mF~2!~x!2F~2!~x!]mF~1!~x! ~9!

and it cannot be written as a function of the gradients. I
also easy to see directly that its correlation functions do
have a limit asm→0 ~see Appendix B!. The Noether curren
ht-
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itself makes sense as a quantum field only if it is smea
with test functionsf m satisfying

E d2x fm~x!50. ~10!

On the other hand, it is not hard to see thatfc(x)5curl( j )
can be written as a function of the gradients

fc~x!52$@]2F~1!~x!#@]1F~2!~x!#

2@]1F~1!~x!#@]2F~2!~x!#% ~11!

and its two-point function is of the form

^fc~0!fc~x!&}
1

~x2!2 . ~12!

In Appendix A we give some explicit formulas concernin
this model starting from its lattice version.

The problem in the O~2! model is then the following: It is
conceivable that both curlj and divj have bona fide con-
tinuum limits, but the current itself does not. This is a s
called local cohomology problem, which has been discus
for decades in axiomatic quantum field theory and has a
been touched upon more recently in the context of str
theory. We give a short discussion of this issue in Appen
B. In Sec. III we will use general arguments such as
together with the fact that the O~2! model becomes critical a
a finite value of the inverse temperatureb to rule out this
possibility for the O~2! model. Our arguments will show tha
both curlj and divj have correlations that are pure conta
terms in the continuum limit; this means that in Minkows
space both the current and its dual are conserved, in ac
dance with Affleck’s claim.

This leaves, however, still another possibility open, whi
would make the conformal classification inapplicable in t
critical O~2! model: It could happen that the current itself h
correlations that are pure contact terms, in which case
Minkowski space Noether current would simply vanish
the continuum limit. We do not see any way to rule out th
possibility by pure thought; but our numerical simulatio
reported in Sec. IV make it very likely that this does n
happen and the current is indeed a nonvanishing multiple
the gradient of a massless free field, as Affleck claims.

While our arguments establishing the enhancement of
symmetry toG3G would apply to any other 2D model with
continuous symmetry groupG possessing a massless pha
at finite b, one would have to appeal to numerics to dec
whether or not the current becomes ultralocal. The stand
wisdom is that 2D O(N) models withN.2 havebcrt5`
@5#. We disputed this scenario and argued that for any fin
N, bcrt,` @6,7#. One may wonder what the numerics r
veal; we give some preliminary report at the end of Sec.
It suggests that the situation for O(N), N.2, is not different
from that for O~2!.

III. THE NOETHER CURRENT OF THE O „2… MODEL:
ANALYTIC ARGUMENTS

The O~2! model is determined by its standard Ham
tonian ~action!
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57 113CONTINUUM LIMIT OF TWO-DIMENSIONAL SPIN . . .
H52(̂
i j &

s~ i !•s~ j !, ~13!

where the sum is over nearest-neighbor pairs on a sq
lattice and the spinss(•) are unit vectors in the planeR2. As
usual, Gibbs states are defined by using the Boltzmann fa
exp(2bH) together with the standarda priori measure on the
spins first in a finite volume and then taking the thermod
namic limit.

The model has been studied extensively both theoretic
@5# and by Monte Carlo simulations~see, for instance
@8–10#!. Its most interesting property is its so-called K
transition from a high-temperature phase with exponen
clustering to a low-temperature one with only algebraic
cay of correlations; according to a recent estimate this tr
sition takes place atbKT'1.1197@10#.

The nature of the transition is supposed to be pecu
with exponential instead of the usual powerlike singulariti
but this is not our concern here. Instead we want to study
model at its transition point. We are in particular interes
in the correlations of the Noether current, given by

j m~ i !5b@s1~ i !s2~ i 1m̂ !2s2~ i !s1~ i 1m̂ !#

5bsin@f~ i 1m̂ !2f~ i !#, ~14!

where

s1~ i !5cos@f~ i !#, s2~ i !5sin@f~ i !#. ~15!

To our knowledge this observable has not been studied in
literature.

On a torus the current can be decomposed into th
pieces: a longitudinal one, a transverse one, and a con
~harmonic! piece. This decomposition is easiest in mome
tum space and effected by the projections

Pmn
T 5S dmn2

~eipm21!~e2 ipn21!

(
a

~222cospa! D ~12dp0!, ~16!

Pmn5
L 5

~eipm21!~e2 ipn21!

(
a

~222cospa!

~12dp0!, ~17!

and

Pmn
h 5dmndp0 , ~18!

with pm52pnm /L, nm50,1,2, . . . ,L21.
In the following we will mostly discuss these correlatio

in momentum space. In particular we study the tranve
momentum space two-point function

F̂T~p,L ![Ĝ~0,p;L !5^u ĵ 1~0,p!u2& ~19!

~for pÞ0; the caret denotes the Fourier transform! and the
longitudinal two-point function

F̂L~p,L ![Ĝ~p,0;L !5^u ĵ 1~p,0!u2& ~20!
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~for pÞ0). Because the current is conserved, its diverge
in the Euclidean world should be a pure contact term and
dimensional reasons the two-point function should be p
portional to ad function, i.e.,

F̂L~p,L !5const. ~21!

The constant is in fact determined by a Ward identity
terms ofE5^s(0)•s(m̂)&: Consider~for a suitable finite vol-
ume! the partition function

Z5E )
i

df~ i !)̂
i j &

exp$bcos@f~ i !2f~ j !#%. ~22!

Replacing under the integralf( i ) by f( i )1a( i ) does not
change its value. So expanding in powers ofa, all terms
except the one of ordera0 vanish identically ina( i ). This
leads in a well-known fashion to Ward identities express
the conservation of the current. Looking specifically at t
second-order term ina and Fourier transforming, we obtai

^u j 1~p,0!u2&5F̂L~p,L !5bE. ~23!

This is confirmed impressively by the Monte Carlo simu
tions that are reported in Sec. IV.

The thermodynamic limit is obtained by sendingL→`
for fixed p52pn/L, so that in the limitp becomes a con-
tinuous variable ranging over the interval@2p,p). The O~2!
model not only does not show spontaneous symmetry bre
ing according to the Mermin-Wagner theorem, but it has
unique infinite volume limit, as shown long ago by Bric
mont, Fontaine, and Landau@11#. In Sec. IV we illustrate the
convergence to the thermodynamic limit with Monte Ca
simulations.

The continuum limit in a box, on the other hand, is o
tained as follows: We take a fractionrL[L/ l of L as the
standard of length~since the system does not produce
intrinsic scale! and look at the correlations ofj m

ren(x)
5(L/ l ) j m( i ), with x5 i l /L for L→`; l becomes the size o
the box in ‘‘physical’’ units ~see@12# for the principles of
this construction!. In Fourier space that means that one has
study, e.g., the behavior ofF̂T(p;L) for fixed n where p
52pn/L. We will prove that this limit is trivial: It is inde-
pendent ofp, corresponding to a contact term inx space.
This behavior is also illustrated by our numerical simulatio
in Sec. IV. More precisely, we want to prove rigorously th
the continuum limit of the thermodynamic limitsF̂T(p,`)
and F̂L(p,`) of F̂T(p,L) and F̂L(p,L) are constants; the
second fact is of course again just a restatement of the W
identity ~12!, whereas the first one expresses the vanishin
curlj in the continuum, thus confirming Affleck’s claim re
garding the enhancement of the continuous symmetry.

The continuum limit in the infinite volume is obtained a
follows. Let F̂(p;`)[T̂(p) be the Fourier transform of the
one-dimensional lattice functionT(n). In general,T̂ has to
be considered as a distribution on@2p,p) and it can be
extended to a periodic distribution on the whole real lin
The continuuum limit ofT(n) also has to be considered i
the sense of distributions; it is obtained by introducing
integerN as the unit of length, making the lattice spacin
equal to 1/N. For an arbitrary test functionf ~infinitely dif-
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114 57ADRIAN PATRASCIOIU AND ERHARD SEILER
ferentiable and of compact support! on the real axis we then
have to consider the limitN→` of

~T, f !N[(
n

f S n

NDT~n!. ~24!

We claim that the right-hand side of this is equal to

1

2p È
`

dq T̂S q

ND f̂ ~q!. ~25!

Proof. Insert in Eq.~24!

T~n!5
1

2pE2p

p

dp T̂~p!eipn ~26!

and

f S n

ND5
1

2pE2p

p

dp f̂~p!eipn/N ~27!

and use the identity

(
n

eipn1 iqna52p(
r

d~p1qa12pr !. ~28!

This produces, after carrying out the trivial integral overq
using thed distribution,

N

2pE2p

p

dp (
r 52`

`

T̂~2p! f̂ „~p12pr !N…

5
1

2p (
r 52`

` E
2Np

Np

dq T̂S 2
q

ND f̂ ~q12pNr !. ~29!

Finally, using the periodic extension ofT̂(p), this becomes
what is claimed in Eq.~25!.

From Eq.~25! one sees that what is relevant for the co
tinuum limit is the small momentum behavior ofT̂(p). In
particular, if limp→0T̂(p)[T̂(0) exists, we obtain

lim
N→`

~T, f !N5
1

2p
T̂~0!E dq f̂~q!5

1

2p
f ~0!T̂~0!, ~30!

expressing the fact that in this case the limit ofT is a pure
contact term.

Next we use RP of the Gibbs measure formed with
standard action~see, for instance,@13#! on the periodic lat-
tice. Reflection positivity means that expectation values
the form

^Au~A!& ~31!

are non-negative, whereA is an observable depending on th
spins in the ‘‘upper half’’ of the lattice$xux1.0% andu(A)
is the complex conjugate of the same function of the spin
the sites withx1 replaced by2x1. Applied to the current
two-point functions this yields

FL~x1 ,L !5(
x2

^ j 1~x1 ,x2! j 1~0,0!&<0 ~32!
-

e

f

at

for x1Þ0 and

FT~x1 ,L !5(
x2

^ j 2~x1 ,x2! j 2~0,0!&>0 ~33!

for all x1. From these two equations it follows directly tha

0<F̂T~p,L !<F̂T~0,L !5F̂L~0,L !<F̂L~p,L !5bE.
~34!

These inequalities remain of course true in the thermo
namic limit, but we have to be careful with the order of th
limits. If we define F̂T(p,`) and F̂L(p,`) as the Fourier
transforms of limL→`FT(x,L) and limL→`FL(x,L), respec-
tively, one conclusion can be drawn immediately.

Proposition. F̂T(p,`) and F̂L(p,`) are continuous func-
tions of pP@2p,p).

The proof is straightforward, because due to the inequ
ties~32!–~34! together with the finiteness ofbKT the limiting
functions FL and FT in x space are absolutely summabl
However, it is not ensured that the limitsL→` and p→0
can be interchanged, nor that the thermodynamic limit a
Fourier transformation can be interchanged. On the contr
by the numerics presented in Sec. IV, as well as finite-s
scaling arguments, it is suggested that

lim
p→0

lim
L→`

F̂L~p,L !. lim
L→`

F̂L~0,L ! ~35!

and therefore also

lim
p→0

lim
L→`

F̂L~p,L !. lim
p→0

lim
L→`

F̂T~p,L !. ~36!

This will play an important role in the justification of Af
fleck’s claim. However, for now we want to show only th
following.

Proposition. In the continuum limit bothF̂L(p,`) and
F̂T(p,`) (pÞ0) converge to constants.

Proof. The proof was essentially given above in Eq
~26!–~30!. We only have to notice that due to Eq.~34!
limp→0F̂L(p,`) and limp→0F̂T(p,`) exist.

In spite of this result, Affleck’s claim could still fail in a
different way if F̂T(p,`) and F̂L(p,`) converged to the
same constant in the continuum limit. Let us denote the c
tinuum limit of F̂T(p,`) by g. Then the current-current cor
relation in this limit is

^ j m j n&~̂p)5bEPmn
L 1gPmn

T 5gdmn1~bE2g!
pmpn

p2 .

~37!

So we see that ifg5bE, the current-current correlation re
duces to a pure contact term and vanishes in Minkow
space. Above we proved only that

g<bE . ~38!

However, if the current-current correlation were a pure co
tact term, it would be unavoidable to conclude that also
spin field becomes ultralocal. This can be seen as follows
the current is ultralocal in the Euclidean world, by th
Osterwalder-Schrader reconstruction@14# the current field
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57 115CONTINUUM LIMIT OF TWO-DIMENSIONAL SPIN . . .
operator in Minkowski space has to vanish and so does
charge operatorQ5*dx j0(x,t). However, if the charge op
erator generates the O~2! symmetry, it would have to have
the following commutation relation with the~renormalized,
Minkowskian! spin fields(x):

@Q,sa~x!#5eabsb~x!, ~39!

which would then imply thats(x) vanishes identically. This
argument is not fully rigorous because it assumes Eq.~39! as
well as the validity of the Osterwalder-Schrader axiom
both have not been proved in full rigor for the continuu
limit of the O~2! model. Also there is only numerical ev
dence, but no rigorous proof, that the continuum limit of t
spin field is not ultralocal. For these reasons we think tha
is worthwhile to show in the next section numerical data t
~together with finite-size scaling arguments! rule out directly
ultralocality of the current.

IV. THE NOETHER CURRENT: NUMERICAL
SIMULATIONS

As remarked before, a recent estimate for the transi
point is @10#

bKT51.1197. ~40!

Of course this number is not exact, but for our purpose i
sufficient that the correlation length is so large that on
lattices we can simulate it may be treated as infinite.

In Fig. 1 we report some data of the longitudinal curre
current correlationF̂L(p,L), taken on a 64364 lattice at
different values ofb. The figure illustrates how well the
Ward identity~23! is satisfied by our data.

For the transverse current-current correlationF̂T(p,L) we
took data atb51.1197 on lattices of linear extentL550,
100, 200, and 400. For the three smallerL values we took
three or four runs of 500 000 clusters each, whereas foL

FIG. 1. Longitudinal current correlation.
he

;

it
t

n

s
e

-

5400 we only have one such run. The thermodynamic lim
is obtained by sendingL→` for fixed p152pn1 /L. In Fig.
2 we show the values ofF̂T(p,L) plotted againstp for dif-
ferent values ofL. The figure illustrates the convergenc
towards the thermodynamic limit, although there might
some nonuniformity forp→0.

In Fig. 3 we plotFT(0,L)2FT(p,L) for L550, 100, 200,
and 400 against the continuum momentum parameten
5pL/2p. This figure illustrates how this difference con
verges to zero as we approach the continuum limit, in acc
dance with the analytic proof given in Sec. III.

Let us finally turn to the question left open in Sec. I
namely, whether or not the continuum limitg of F̂T(p,`) is

FIG. 2. Transverse current correlation: approach to the ther
dynamic limit.

FIG. 3. Transverse current correlation on different lattices
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116 57ADRIAN PATRASCIOIU AND ERHARD SEILER
equal tobE. For b,bKT the current two-point function de
cays exponentially, hence its Fourier transform is continu
~and even real analytic!. The same applies then to the long
tudinal and transverse partsF̂L(p,`) and F̂T(p,`); in par-
ticular

F̂T~0,̀ !5F̂L~0,̀ !5bE ~41!

by the Ward identity~23!.
That does not, however, imply that atb5bKT ,

limp→0F̂T(p,`)5bE, because the current two-point fun
tion cannot be expected to be absolutely summable there
the contrary, if we can find that

lim
L→`

F̂L~0,L !,bE, ~42!

this implies also

g5 lim
p→0

F̂T~p,`!,bE ~43!

because by Eq.~34! F̂T(p,`)< limL→`F̂L(0,L).
The Monte Carlo data taken atbKT and listed in Table I

indicate that

d[bE2F̂L~0,L !5F̂LS 2p

L
,L D2F̂L~0,L ! ~44!

goes to a positive number~less than 0.68 but probabl
greater than 0.6!, suggesting that indeedg,bE. However,
the question is whether or not this ‘‘discontinuity’’ is a finit
volume artifact. To address this issue we took data ab
,bKT, keeping the ratioL/j fixed while increasingj. In this
approach the massless continuum limit would correspon
L/j→0 ~while L/j→` would correspond to the massiv
continuum limit in a thermodynamic box!. Actually we use
L/jeff instead ofL/j as an independent variable, wherejeff is
the effective correlation length measured on the lattice
size L; in the finite-size scaling limit the two variables a
equivalent becauseL/jeff becomes a unique monotonic fun
tion of L/j. The data listed in Table II indicate thatd(L)
5bE2F̂L(p,L) @the discontinuity ofF̂L(p,L) at p50# de-
pends only onL/jeff, in agreement with finite-size scaling
and that it goes to a value above 0.6 in the massless
tinuum limit, which is reached aroundL/jeff'1.3. Together

TABLE I. Discontinuity d(L)5bE2g(L) at bKT for different
values ofL.

L L/jeff g(L) d(L)

25 1.2575 0.09769 0.7117~10!

50 1.2657 0.10666 0.7027~18!

100 1.2667 0.11638 0.6930~11!

200 1.2722 0.12357 0.6858~08!

400 1.2839 0.12944 0.6799~16!
s

n

to

f

n-

with the data taken atbKT , this tells us that limL→`d(L) is
somewhere between 0.6 and 0.68~it actually might be equal
to 2/p). The two data sets together, in any case, prov
convincing evidence that the Noether current is not an
tralocal field.

In closing we want to repeat that none of our analy
considerations in this paper were specific to the O~2! model:
They apply equally well to the O(N) model for anyN, pro-
vided it has~as we believe! a second-order phase transition
some finite valuebcrt . We ran some exploratory tests in th
O~3! model. If we run atb53, a value at which this mode
may be in its massless phase, unfortunately any lattice a
nable to numerical simulation is so ‘‘frozen’’ that Mont
Carlo data simply reproduce perturbation theory. Thus
only alternative is to run in the massive phase, withb andL
chosen such that we see massless behavior (L,j) yet L is
large enough so that the model can exhibit nonperturba
behavior. Our data revealed a behavior similar to the o
found in O~2!: At fixed L/j there is a discontinuity tha
scales with increasingL and is a function ofL/j only. How-
ever, that should happen whether or notbcrt is finite, hence
all we can say is that ifbcrt is finite, the situation is quite
similar to the one encountered in the O~2! model.

ACKNOWLEDGMENTS

A.P. is grateful to the Alexander von Humboldt Found
tion for financial support and to the Max-Planck-Institut f
its hospitality; E.S. is grateful to the University of Arizon
for its hospitality and financial support.

TABLE II. Discontinuity d(L)5bE2g(L) at various values of
b,bKT andL.

b L L/jeff d(L)

0.93 12 1.8319 0.3646~22!

0.93 24 2.4441 0.1926~24!

0.93 36 3.2259 0.0875~34!

0.96 18 1.8314 0.3636~24!

0.96 36 2.4242 0.1929~31!

0.96 54 3.1996 0.0926~34!

0.99 32 1.8595 0.3543~48!

0.99 63 2.4537 0.1919~64!

0.99 64 2.4467 0.1862~46!

0.99 96 3.2110 0.0909~43!

1.04 63 1.5868 0.4709~59!

1.06 63 1.4549 0.5411~49!

1.08 63 1.3722 0.6012~36!

1.08 126 1.4188 0.5818~46!

1.09 126 1.3990 0.6174~18!
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APPENDIX A: THE CURRENT
OF THE TWO-COMPONENT FREE FIELD

We first consider the massive two-component scalar fi
in a finite periodic box of sizeL on the unit lattice. It consists
of two independent Gaussian lattice fieldsF1 andF2, both
with covariance

C~x2y!5
1

L2 (
n1 ,n250

L21
exp~2p in~x2y!/L !

m21(
m

~222cos~2pnm /L !

.

~A1!

The Noether current is given by an expression analogou
Eq. ~3!, namely,

j m~x!5F1~x!F2~x1m̂ !2F2~x!F1~x1m̂ !. ~A2!

It is straightforward to compute the curl and the divergen
of this current:
y

e

b-
m

ti
ld

to

e

curlj ~x!5 j 1~x!2 j 1~x12̂!1 j 2~x11̂!2 j 2~x!

5@F1~x!2F1~x11̂12̂!#@F2~x11̂!2F2~x12̂!#

2@F2~x!2F2~x11̂12̂!#@F1~x11̂!

2F1~x12̂!#, ~A3!

divj ~x!5F1~x!~DF2!~x!2F2~x!~DF1!~x!. ~A4!

It is obvious from these formulas that the massless limit
curlj exist because it depends only on differences ofF ’s,
whereas for divj it does not. Likewise the two-point function
of the transverse part of the current has a limit asm→0,
whereas the two-point function of the longitudinal part do
not.

Next we want to give explicit expressions for the tw
point functions of the current in momentum space. We g
separately the transverse and the longitudinal partsF0

T(p,L)
and F0

L(p,L), respectively, choosing the momentump
5(p1,0)5(2pk1 /L,0) in the 1 direction:
F0
T~p,L !5

2

L2 (
n1 ,n2

1

m21422cos
2pn1

L
22cos

2pn2

L

12cos
2pn2

L

m21422cos
2p~k12n1!

L
22cos

2pn2

L

~A5!

and

F0
L~p,L !5

2

L2 (
n1 ,n2

1

m21422cos
2pn1

L
22cos

2pn2

L

12cos
2p~2n12k1!

L

m21422cos
2p~k12n1!

L
22cos

2pn2

L

. ~A6!
a

r is
:

Let

t

The continuum limit of this function would be obtained b
sendingL→`, keepingk15pL/2p fixed. It does not exist,
but if we replaceFT(p,L) by FT(0,L)2FT(p,L), the limit
does exist. This is illustrated in Fig. 4.

The thermodynamic limit, on the other hand, is obtain
by sendingL→`, keeping p52pk1 /L fixed. This limit
does exist forpÞ0, as illustrated in Fig. 5.

APPENDIX B: LOCAL COHOMOLOGY

It has been noted long ago@15–17# that the imposition of
locality ~local commutativity, Einstein causality! may make
the cohomology of Minkowski space nontrivial. The pro
lem of local cohomolgy may be stated as follows: Assu
that an antisymmetric tensor fieldFm1 , . . . ,mk

(x) is given,
which satisfies Wightman’s axioms and is closed, i.e., sa
fies

dF[dS ( Fm1 , . . . ,mk
dxm1 . . . dmkD50 ~B1!

~in the notation of alternating differential forms!. The ques-
d

e

s-

tion is then whether the fieldF is exact, i.e., there exists
local antisymmetric tensor fieldC such thatF5dC.

There are some well-known examples where the answe
‘‘no,’’ even though Minkowski space is topologically trivial
~i! the free Maxwell fieldF in dimensionD>2 @15# and~ii !
the gradient of the massless free scalar fieldf in two dimen-
sions because the fieldf does not exist as a local~Wight-
man! field.

In this paper we came across a different 2D example:

F5fcdx1dx2, ~B2!

wherefc has the Euclidean two-point function

^fc~0!fc~x!&5
1

~x2!2 . ~B3!

Then F is trivially closed in two dimensions, but it is no
exact, i.e., there is no local vector fieldj m such that

fc5emn]m j n . ~B4!
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This example can be made more explicit by requiringfc
to be a generalized free, i.e., Gaussian, field, with its tw
point function given by Eq.~39!. If we solve the differential
equations that the two-point function ofj m has to fulfill in
order to satisfy Eq.~40! and impose Euclidean covarianc
we find that there is no scale-invariant solution. The cova
ant solutions are

Gmn~x!52dmn

lnx21l

8x2 1xmxn

lnx2111l

4x2 . ~B5!

This is not the two-point function of a local vector field
continued to Euclidean times: It violates the so-called refl
tion positivity @14# because the logarithm changes sign. F
the same reason it is also not the two-point function o
random field.

FIG. 4. Transverse free current correlation: approach to the c
tinuum limit.
s.

d

an
/

-

i-

-
r
a

More recently, people working in string theory have al
come across the phenomenon of nontrivial local cohom
ogy. Banks and Dixon@18# have noticed a problem with th
current generating the Lorentz transformations of uncomp
tified space-time in the heterotic string, which is in essen
just the local cohomology problem. Polchinsky@19# has
linked the occurrence of this problem to the noncompactn
of the target space in this case and so one might expect
the problem cannot arise in the continuum limit of the O(N)
nonlinears models. But we do not see how his argumen
could be made into a real proof: It should not be forgott
that quantum fields are always distributions and so the i
of compactness of the target space cannot be taken liter
it is only a property of a particular lattice approximation of
continuum theory. This is the reason why we think the arg
ments that we present in this paper to rule out nontrivial lo
cohomology for the Noether currents of the O~2! model are
necessary to close a gap.

n- FIG. 5. Transverse free current correlation: approach to the t
modynamic limit.
th.
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